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Continual Learning:  
The Next Generation of Artificial Intelligence
DANIEL G. PHILPS

PREVIEW Dan Philps provides an introduction to automated machine learning and its 
possible next-generation realization, continual learning (CL). CL advances the state of the art 
by attempting to automatically learn different tasks while retaining knowledge from previous 
model implementations. This article presents an application of CL to investment decisions. It 
also offers the interesting perspective that complexity is not simply a technical characteristic of 
a model formulation, but also a resultant of the application of human judgment. Although CL 
may be more technically complex than many forecasting models, it reduces if not eliminates 
the complexity from judgmental human inputs.

INTRODUCTION

Go simple or go complex? For an ap-
plied-data scientist, simplicity wins 

every time (although with just enough 
“complexity-veneer” to hedge the next 
promotion). 

There is considerable evidence that un-
due complexity reduces forecasting ac-
curacy (Green and Armstrong, 2015). It 
also detracts from interpretability and 
costs more in time, tech, and resources. 
So how can it be that machine learning 
(ML), generally considered to be complex, 
presents forecasters with an unmissable 
opportunity? 

Answer: while ML is generally perceived 
to be complex, it can actually reduce com-
plexity in model development by avoiding 
human behavioural biases and by auto-
mating intermediate steps. In addition, if 
complexity serves to encompass a richer 
variety of information and if learning 
from this information can be automated, 
complexity is a price worth paying. For 
these reasons, ML has started to become 
a powerful resource for forecasters. This 
article discusses the potential benefits of 
two types of ML: automated (autoML) 
and continual learning (CL). Both can 
be described as end-to-end approaches, 
meaning they can directly convert input 
data into an output forecast, bypassing 
traditional intermediate steps. 

ELIMINATING OUR OWN COMPLEXITIES

The subjectivity and behavioural biases 
we as forecasters tend to introduce to a 
modeling process are only partly tem-
pered through experience. Biases include 
confirmation bias (Hergovich and col-
leagues, 2010) towards our latest favored 
approach; cognitive dissonance (Festinger, 
1957), where we rework past errors to 
fit a competent perception of ourselves; 
and the availability heuristic (Tversky and 
Kahneman, 1973), where we bias our ap-
proach to cues that happen to be at the 
forefront of our minds. While the percep-
tion of ML is one of complexity, ML may 
actually be a way of automating away the 
greater complexity of our own inductive 
biases.

Following on from Spyros Makridakis’s 
excellent series of articles in Foresight 
(Makridakis, 2017-18), this piece first 
describes automated machine learning 
(AutoML), and then what is likely to be 
the most disruptive end-to-end ML tech-
nology you have never heard of, continual 
learning (CL). This piece then explains 
why both are likely to become indispens-
able tools for forecasters.

AutoML

AutoML attempts to automate the steps 
an expert human would take to complete 
a forecasting project, thereby reducing 
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the complexity in model development. 
AutoML’s big advantage is that it allows 
forecasters to tap into the power of ML 
with minimum engagement in the under-
lying ML algorithms. 

The original motivation for AutoML was 
to increase the productivity of research-
ers and reduce the probability of errors. 
However, AutoML has now exceeded 
these initial aims by becoming capable 
of learning from past operations (Feurer 
and colleagues, 2015). For instance, some 
commercial AutoML systems now learn to 
associate different shapes of input data—
metadata—with preprocessing and model 
selection choices that have been effective 
in the past. This is described as learning 
to learn, or meta-learning. 

Figure 1 displays an AutoML system; 
input data is passed in with a forecasting 
target specified (Ytest). The system then 
attempts to build an appropriate solu-
tion. First, meta-data is extracted (i.e. in-
formation that describes the input data) 
from which the system may attempt to 
guess options and settings to use. Many 
different learners are also tested, which 
can range from linear regression through 
to ARIMA, multi-layered perception, 
and support vector machines (SVMs). 
Gradient boosting trees and random 
forests are popular choices. The winning 
approaches (and associated settings) are 
generally chosen using fairly traditional 
statistical model selection combined with 
brute force grid searches. The most effec-
tive algorithms are shortlisted and then, 
typically, an ensemble of these approach-
es is formed to perform a final forecast. 

AutoML gives forecasters wide-ranging 
access to a broad toolbox of learners in 
a packaged pipeline—a neat way of con-
solidating existing algorithms and ML 
approaches while reducing the complexity 
of model development.    

CONTINUAL LEARNING

While AutoML is a powerful tool, it is 
mainly just a consolidation of first-gener-
ation ML approaches. The next generation 
of ML, while drawing on similar building 
blocks, offers much greater potential. An 
example is continual learning—but is 
it mature enough to use in a forecasting 
process?  

In ML, once a new model is learned, all 
previous models tend to be forgotten, an 
effect called catastrophic forgetting. In con-
trast, CL attempts to extract knowledge 
from a stream of information over time, 

■  Automated machine learning could become an 
indispensable tool for forecasters, as it has for 
data scientists, but practitioners first need to take 
a pragmatic view of the perceived complexity/
disadvantages of machine learning (ML).

■  This article addresses how automated machine 
learning (AutoML) might mitigate forecasters’ 
complexity concerns and introduces perhaps the 
next step in ML’s evolution: continual learning (CL). 

■  CL has even greater potential to further automate 
forecasting by building a memory of different 
tasks over time, addressing what is called the 
catastrophic forgetting problem. 

■  The authors provide an example of how CL was 
successfully implemented in the real world to 
guide investment decisions.

Key Points

Figure 1. A Simple AutoML System

Source: An AutoML system for classification based on Auto-sklearn
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to then build memories (a knowledge base) 
that can be used to improve future fore-
casting, as illustrated in Figure 2. The 
idea is to have a system that generalises 
across different forecasting tasks (Tn) and 
perhaps modes of data, and retains the 
task-specific knowledge of what works 
best for each. This knowledge can then 
be recalled and applied if a similar task is 
encountered again in the future.

Research into CL commenced in the 
1990s from a desire to construct knowl-
edge-accumulating machines to avoid 
the catastrophic forgetting of traditional 
approaches (Silver, 2015). However, en-
abling machines to learn over time faces 
the serious challenge known as the sta-
bility-plasticity dilemma (Mermillod and 
colleagues, 2013), in that a system should 
learn over time but not at the expense of 
corrupting older knowledge. 

A number of solutions have been pro-
posed. In the late 1990s, Sepp Hochreiter 
and Jurgen Schmidhuber (1997) in-
troduced the long short-term memory 
(LSTM) approach, which allows a recur-
rent neural network (NN) to forecast 
sequences—words in a passage of text, 
for example. (For a Foresight tutorial on 
neural network architecture basics, see 
Batchelor [2005], and for a more recent 
review of NN, see Januschowski and 
colleagues [2018]). Alex Graves and his 
team at DeepMind (2016) made a start 
in overcoming catastrophic forgetting, 
and subsequent researchers focused on 
how the extensive memories created by 
CL could be compressed into a knowl-
edge base using elastic weight consolida-
tion (Kirkpatrick and colleagues, 2017). 
However, there is only so much informa-
tion you can squeeze into even a deep 
neural net before an information satura-
tion point is reached.  

An analogy of continual learning is how a 
child learns to ride a bike: wobbly at first, 
and then as skill develops with practice 
the neural pathways are reinforced and 
harden in the brain. Once learned, this 
skill is difficult to forget; in addition, it 
can be augmented if the child graduates 
to mountain biking, or transferred in 
learning to ride a unicycle. Simulating 

this effect with technology is challenging 
because the stability-plasticity problem 
must be addressed. Fortunately, real-
world progress is being made through 
continual learning augmentation (CLA).

CONTINUAL LEARNING  
AUGMENTATION

A team I belong to from City University 
of London (Philps, Weyde, Garcez and 
Batchelor, 2018) developed an end-to-
end learning system that acquires knowl-
edge of different states (regimes) from 
multiple time series, and then applies 
this to a forecasting process that guides 
investment decisions. We call it continual 
learning augmentation (CLA) and it is ap-
plied as an open-world approach, be-
longing to a class of deep ML algorithms 
called memory-augmented neural nets 
(MANNs). 

A base learner is chosen to drive CLA—
for example, linear regression or a 
multilayered perceptron. This selected 
approach is run in a conventional way, 
stepping forward through time, forecast-
ing time steps ahead. We then add a mem-
ory structure to this base learner. CLA’s 
memory structure is designed to contain 

Figure 2. A Simple CL System

Source: Based on Lifelong machine learning, Chen et al. 2018
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its base learner’s parameters, which are 
remembered and recalled to improve fu-
ture forecasting. Two observations allow 
us to develop this approach. First, we 
found it is possible to remember the most 
effective base learner parameterizations 
(model memories) over time, as patterns 
in the input data changed. Secondly, as 
Figure 3 shows, we found it is possible to 
recall these model memories at a future 
time by recognising reoccurring patterns 
in the input data.

We tested the system in a trading simula-
tion using multivariate time-series data 
from recent financial history, including 
the period leading up to the subprime 
crisis, the “quant quake,” the post-quan-
titative easing (QE) era, and the (first) 
eurozone crisis. Base-learner parameter-
izations that appeared to best identify 
good (and bad) investments during these 
periods were stored as model memo-
ries that could be recalled when current 
events seemed to echo the past. For 
example, the approach recalled the QE-
driven recovery in 2009 and identified 
this knowledge as the most pertinent to 
apply in stock-selection decisions during 
the stimulus-driven stock market rally in 
China in 2017. 

We found the system would have sig-
nificantly outperformed the investment 
returns of the simple, unaugmented base 
learners we tested in a global equities in-
vestment simulation between 2003 and 
2017. We believe these returns would 

have put a CLA-driven investment strat-
egy in the top 25% of managed funds by 
return over the study period.

Although CLA does not overcome the 
stability-plasticity dilemma, we have 
shown that CL can be effectively applied 
to specific, complex, real-world tasks.

CONCLUSION

In spite of its perceived complexity, end-
to-end machine learning is likely to be-
come an indispensable tool for forecast-
ers. It will reduce human involvement in 
model development and, in doing, make 
outcomes more objective. Additionally, 
the complexity of ML approaches is a 
price worth paying if the result is richer 
information and automated learning. 

This article has addressed the potential 
benefits of two advances in machine 
learning: AutoML and continual learning 
(CL). While AutoML is now a reality, of-
fering forecasters a powerful, automated 
approach, the next generation of ML 
promises to be more powerful still. 

CL will allow machines to learn over time, 
enabling generalizations across many 
tasks. While key research questions be-
hind CL remain unanswered, this has not 
stopped the successful development of 
applied CL, of which continual learning 
augmentation (CLA) is an important ex-
ample. So the seemingly simple question 
as to whether we “go simple or go com-
plex” is not as simple as it seems.

Figure 3. A CLA System to Guide Investment Decisions

Source: Philps and colleagues, 2019
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